牛顿拉普森(Newton 您所在的位置:网站首页 python 解非线性方程 牛顿拉普森(Newton

牛顿拉普森(Newton

2023-07-05 09:40| 来源: 网络整理| 查看: 265

第二十二篇 非线性方程组的牛顿拉普森解

这种方法是基于几个变量的泰勒展开式来求解的。例如,对于两个方程,假设我们展开一个关于根(x1,x2)的猜想的泰勒级数。对于x1方向上的“一小步”Δx1和x2方向上的“一小步”Δx2,一阶泰勒展开为 在这里插入图片描述 其中 在这里插入图片描述 假设(x1+Δx1,x2+Δx2)是方程的根,那么对应f1和f2的值就会为0,上式将会变成 在这里插入图片描述 或者以矩阵形式,左边为雅可比矩阵,其行列式称为“雅可比”。显然,如果雅可比为零,则迭代过程失败,如果它接近零,则收敛速度可能会较慢。 在这里插入图片描述 其中所有函数和导数都在初始猜测值(x1,x2)处取值,因此,对于n个非线性方程组,我们必须求解n个线性方程来求得向量的变化值 在这里插入图片描述 使用上面的值去更新所有的向量 在这里插入图片描述 这个过程不断地重复,直到上面方程的解向量基本不再改变 计算实例: 使用牛顿拉普森法去发现方程在x=1.8和y=0.5附近的根 在这里插入图片描述 首先我们根据下标符号将方程排列成标准形式 在这里插入图片描述 通过上面公式提到的微分形成雅可比矩阵 在这里插入图片描述 在小型的非线性方程组中,很容易得到雅可比矩阵的逆,因此 在这里插入图片描述 第一次迭代 初始猜测值,x1=1.8,x2=0.5,因此 在这里插入图片描述 因此 在这里插入图片描述 第二次迭代,更新值 在这里插入图片描述 因此 在这里插入图片描述 因此 在这里插入图片描述 第三次迭代 更新值 在这里插入图片描述 随着不断迭代Δx1、Δx2→0,就越来越接近根。 程序如下 分为一个主程序和一个检查多个向量收敛的子程序checkit,两个函数程序,分别为函数形式和函数的导数形式。程序中矩阵程法使用,np.dot;矩阵取逆采用np.linalg.inv 主程序:

#非线性方程组的牛顿拉普森法 import numpy as np import B n=2;tol=1.0e-5;limit=100 x1=np.zeros((n,1)) x0=np.ones((2,1),dtype=np.float) print('开始的猜测值',x0[:,0]) print('前几次迭代值') iters=0 def f37(x): f37=np.zeros((2,1),dtype=np.float) f37[0,0]=2.0*x[0,0]**2+x[1,0]**2-4.32 f37[1,0]=x[0,0]**2-x[1,0]**2 return f37 def f37dash(x): f37dash=np.zeros((2,2),dtype=np.float) f37dash[0,0]=4.0*x[0,0] f37dash[1,0]=2.0*x[0,0] f37dash[0,1]=2.0*x[1,0] f37dash[1,1]=-2.0*x[1,0] return f37dash while(True): iters=iters+1 x1[:,0]=x0[:,0]-np.dot(np.transpose(f37(x0)),np.linalg.inv(f37dash(x0))) if B.checkit(x1,x0,tol)==True or iters==limit: break x0[:,0]=x1[:,0] if itersbig: big=abs(loads[i-1,0]) for i in range(1,neq+1): if abs(loads[i-1,0]-oldlds[i-1,0])/big>tol: converged=False checkit=converged return checkit

终端输出结果如下 在这里插入图片描述 程序结果与计算结果一致



【本文地址】

公司简介

联系我们

今日新闻

    推荐新闻

    专题文章
      CopyRight 2018-2019 实验室设备网 版权所有